
N89-19874

A Novel Manipulator Technology

For Space Applications

Donald Schmitz, Pradeep Khosla, and Takeo Kanade

The Robotics Institute
Camegie-Mellon University

Pittsburgh, Pennsylvania 15213

Abstract
Modular manipulator designs have long been considered for use

as research tools, and as the basis for easily modified industrial
manipulators. In these manipulators the links and joints are discrete
and modular components that can be assembled into a desired
manipulator configuration. As hardware advances have made actual
modular manipulators practical, various capabilities of such
manipulators have gained interest. Particularly desirable is the
ability to rapidly reconfigure such a manipulator, in order to custom
tailor it to specific tasks. This reconfiguration greatly enhances the
capability of a given amount of manipulator hardware. This paper
discusses the development of a prototype modular manipulator and
the implementation of a configuration independent manipulator
kinematics algorithm used for path planning in the prototype,.

1. Introduction
The major advantage of robotic manipulators over task-specific

hardware for automation is their flexibility. In theory, a robot’s task
can be changed simply by loading a new program into its controller.
However, in practice this is rarely the case. Each robot has a specific
configuration that supports a limited range of capabilities,
appropriate only to the applications for which it was designed. The
major factors that define the configurations are the link lengths, joint
actuators, and geometry of joint-link connections. For example,
horizontal SCARArconfiguration manipulators, connected with
relatively short links, are suitable for delicate table-top assembly
operations requiring accuracy and selective stiffness, but they are not
usable for tasks that require a vertically large workspace. On the
other hand, medium-sized, vertical Puma-configuration manipulators
with a relatively long reach in all directions, are suitable for painting,
welding and parrs handling. Using manipulators with different
configurations for each task is possible when the task requirements
are known beforehand. However, in less predictable situations, such
as an outdoor construction site, inside a nuclear facility or aboard a
space station, a manipulator system would need a wide range of
capabilities, probably beyond the limitations of a single fixed-
configuration manipulator.

We have proposed a manipulator system, The Reconfigurable
Mohlar Manipulator System (RMMS), that addresses the above
mentioned shortcomings. It provides a viable alternative to using
fixed configuration manipulators by extending &he existing concept
of modular manipulator design. The term modular manipulator
generally refers to a robotic manipulator assembled from discrete
mechanical joints and li@ into one of many possible manipulator
configurations [17]. Such a manipulator has several advantages over
conventional designs, most notably economy of manufacture, ease of
modification and ease of repair. At least one such modular
manipulator is now commercially available [13].

The Reconfigmble Modular Manipulator System extends the
concept of modularity throughout the entire manipulator system to
include not only the mechanical hardware, but also the electrical
hardware, control algorithms, and software as well. The RMMS
(Reconfigurable Modular Manipulator System) utilizes a stock of
interchangeable link modules of various lengths, and joint modules
of various sizes and performance specifications. This modularity
allows a wide mnge of manipulator architectures to be assembled
from a small set of general purpose hardware and software
components.

The concept of an RMMS poses challenging technological and
theoretical research issues that must be addressed before such a
system can be used effectively. In this paper we discuss both
theoretical and technological issues and describe our progress in this
area. In order to demonstrate our ideas we have built a prototype
RMMS in our laboratory. We describe the design and operation of
this prototype RMMS. The prototype includes 6 joint and 6 link
modules, and a controller consisting of a Motorola 68020 based

computer with real-time capabilities. We have also implemented an
algorithm that automatically generates forward and reverse
manipulator kinematics. The RMMS is presently controlled by
independent joint control algorithms. We are now addressing issues
such as mapping task specifications to manipulator configurations,
automated generation of the manipulator dynamics equations, and
reconfigurable model-based control algorithms. Interestingly, a

42 1

ORIGINAL PAGE IS
OF POOR QUALln

recent survey indicates a need for manipulators with both
reconfigurability and extensibility for research in all areas of
robotics [15]. Our RMMS design provides practically all of the
features discussed in this survey.

2. Design Philosophy and Implementation

conventional manipulators:
An RMMS consists of similar subsystems as those found in

A physical structure of joints and links.

-Servo systems for each joint, consisting of actuators,

A computer controller and programming environment

transmissions, and sensors.

The major differences between an RMMS and a conventional
manipulator are the standardized component interfaces and
configuration independent control algorithms. The interface
standardization must include the mechanical mating of manipulator
modules, the format of data communication, the communication
protocols between hardware and software, and between various
levels of software. Although adopting such standards impose some
restrictions on the design of the actual components, this disadvantage
is offset by the interchangeability of manipulator components and
the capability for rapid reconfiguration. In the following
subsections, we present the design, and mechanical and electronics
interface of each major component in the prototype RMMS system
that we have developed in our laboratory.

2.1. Link and Joint Modules
The mechanical modules making up an RMMS are divided into

two groups, joints and links. The design of each module is
independent of other modules except for the module interfaces
which are standardized One implication of this modular joint
design is that the entire joint actuator must be packaged within the
joint module. Each joint module must include a motor (or some type
of actuator), a transmission mechanism, a position sensor, and the
necessary power electronics to control the motor. Electrical power is
distributed and communication is multiplexed over a small number
of conductors permanently installed in each module. This allows for
simple assembly without custom cabling. Although these design
constraints limit the power which can be generated by the pint due
to the limited size of the motor, transmission, and power amplifier,
this is not viewed as a major short coming of the design. By
properly selecting the transmission reduction ratio, high torques at
low speeds can be obtained, appropriate for most tasks as long as
speed of operation is not critical.

For simplicity and convenience, we have considered and built
only the two common types of revolute joint in our RMMS. These
two types are rotate, and pivot, and are distinguished by the
orientation of the joints link axes with the joint axis. Both types of
joint are shown schematically in Figure 2-1. A rotate type joint has
link axes which are co-linear with each other and with the joint axis.
A pivot has link axes which are both perpendicular to the joint axis.

Our current designs for pivot and rotate joints are shown in the
photographs in Figures2-2 and 2-3. The actuator in each joint
consists of a conventional servo motor and linear amplifier driving a
harmonic drive with 200:l reduction ratio. This design yields a
maximum output torque of 200 ft-lbf, and maximum axis speed of
0.7radian/second. Also integral with the joint assembly is a
brushless resolver mounted coaxially with the output shaft,
providing position feedback with a resolution of O.ooO1 radians. A

wire windup allows the resolver (and output shaft) to turn up to 4800
before damaging the resolver electrical connections. In our design
we have also allowed for incorporating a tachometer that is directly
coupled to the motor shaft The tachometer will provide output shaft
velocity measurements with a resolution of 0.001 radians/second.
All of the actuator components are packaged in a subassembly of
the joint module, allowing a number of kinematically different types
of module to be manufactured from this common assembly. The
total weight of both types of joint is 17 Ibs.

--

Figure 2-3: Photo of CMU RMMS Prototype Rotate Joint

Figure 2-1: Modular Joint Assemblies

Figure 2-2: Photo of CMU RMMS Prototype Pivot Joint

422

We tested the joint modules using a fixed gain, PSD feedback
control algorithm. The control loop gains and sampling rate were
determined by an experimental procedure [6]. In our experiments,
we obtained static positioning accuracies of kO.001 radians, and
closed-loop stability of the system was demonstrated at sampling
rates as low as 100 Hz. We are currently developing techniques for
dynamics identification to evaluate the use of model-based
reconfigurable controllers for the RMMS.

2.2. Joint - Link Interface
In order to assemble the joint and link modules into a manipulator,

a method of mechanically coupling the modules is required. This
coupling must both align the modules, and lock them together with
sufficient strength to transmit the internal forces generated by the
movement of the manipulator. In addition to smeturally coupling
the modules together, this interface must also elecaically couple the
modules, and be able to sense the coupling orientation of successive
modules.

The current interface design is shown in the photograph in Figure
24. The mechanical coupling is accomplished using commercial
V-band clamps. V-band flanges are an integral part of the link and
joint modules, as shown in Figure 2-2 and 24. An arrangement of
pins and holes in each flange limits the coupling orientation to four,
equally spaced positions that are 90 degrees apart. An LED in one
flange and four photomnsistors in the other allow the controller to

sense which of the four possible orientations is in use. Although
rudimentary. this design provides the necessary functionality for the
module interface. We are currently investigating the use of quick
release V-band clamps and more sophisticated designs with locking
mechanisms that allow automatic "peg-in-hole" type coupling.

Figure 2 4 : Photo of Prototype Module Interface

2.3. Communication Interface
Each joint houses the power and sensor electronics for the

actuator. To control the joint actuators and obtain sensor feedback, a
communication link between the joint modules and a computer
controller is required. To allow standard connections between joint
modules, this communication link must be implementcd using a
f i e d number of conductors while being capable of supporting an
arbitrary number of modules. This implies a multiplexed
communication link, similar to a computer bus or Local Area
Network (LAN).

Due to the data transmission overhead associated with existing
LANs, our prototype utilizes a bus type implementation, referred to
as the armbus. The armbus design is shown schematically in Figure
2-5. This design is based on a conventional 8-bit bi-directional
dadaddress bus, an additional 5 control lines, and a rather
unconventional 4 bit daisy chained node address bus. The daisy
chained address bus provides automatic node address configuration;
the fist module in the manipulator is node address 1, the second
module is node address 2, and so on. This is accomplished by
including a "subtract one" circuit in each module which is in the path
of the node address lines. Each joint can thus detect "address equals
zero" as the node address. Due to the low data rate of the bus
(current bus clock is 500 KHz), the propagation delay added by the

subtract circuit is negligible.

Figure 2-5: Manipulator Communication Bus Logic

2.4. RMMS Computing Environment
RMMS software is easily divided into two functional classes: real-

time critical control programs and event-driven application
programs. Real-time programs are those which must be executed at
a predetermined sampling rate, such as control law calculation. In
contrast. event-driven programs rely on detecting conditions, such as
the manipulator reaching a certain position, to schedule future
manipulator actions. In our implementation, we have chosen this
distinction (between real-time and event driven programs) as a
natural module boundary for organizing the manipulator control
software.

0 M " J A Q RAGE IIS
423 OF P Q M QUALITY

In the R M M S environment, a CPU is dedicated to each class of
software. Real-time control programs execute on a dedicated
controller CPU, with a hardware interface to the inter-module
communication network. This controller CPU performs the
necessary realtime control of the manipulator, and receive
commands from a second, masfer CPU. This master CPU executes
the event-driven application program. In this architecture the
manipulator controller appears as a peripheral device. An interrupt
driven communication channel between the two processors provides
a well defined interface between the two softwarefcomputing
modules.

We have implemented this architecture, depicted in Figure 2-6, for
controlling the RMMS. The controller CPU is an Ironics single-
board computer, based on a Motorola 68020 processor and VME
bus, with 1 MByte of dual ported RAM. The master CPU is a
SUN-3 workstation, also based on the Motorola 68020 and VME
bus. This basic architecture (and the support software) can be
expanded to include additional Ironics CPUs for greater
computational power. The similarity between the Ironics and SUN'S
CPU allows us to use the same editor and compiler for both
processors thus simplifying software development and inter-

processor communication. Real-time control programs, at all levek,
are written entirely in c programming language. The interface to the
manipulator communication network is via the VMX bus interface
included on the Ironics. The VMX bus is a recognized extension to
the VME bus and is intended to be a local IO bus in multiprocessor
systems such as the one we have built for controlling the RMMS.

Figure 2-6: Schcmatic of RMMS Computing Architccture

2.4.1. Real-Time Operating System
Manipulator control programs executing on the Ironics real-time

CPU are linked with a locally developed real-time operating system
or kernel. This kernel provides a number of concurrency and
scheduling primitives, allowing users to write control programs as a
series of concurrent processes. It also supports many Unix-like
utilities, particularly memory allocation and access to the SUN
system. These features have two important implications to
development of manipulator control code:

*Control algorithms are written without regard to the
specific hardware and low level software
implementation of the system. At the same time, the
programmer is forced to more fully understand the data
flow and timing relationships of the algorithm being
coded, to specify those relationships via the concurrency
primitives.

By providing real-time programming utilities that mimic
their Unix counterparts, a large base. of existing UnidC
code is easily ported to real-time applications.
Similarly, a large base of existing U n i X programming
expertise is also readily available.

tile
the

2.43. Real-Time Software Architecture
The current software control architecture is shown in Figure 2-7.

In the current design there are four principal processes executing
concurrently:

*The feedback control law which is implemented for
each manioulator axis can be executed at samulina rates
of 50-soO~Hz. Our current implementation k p ' o y s a

*The path planning algorithm updates the control loop
inputs to drive the manipulator to a desired position in a
specified manner (eg. straight line, minimum time, etc).
This can operate at sampling rates of 5-30 Hz. We are
presently using a sampling rate of 20 Hz.
A data logging process that records specified values of
the manipulator state. This information is required for
off-line analysis and for monitoring manipulator control
experiments.

An interactive command interpreter that implements a
low level manipulator control language. This allows a
user or an application program on the SUN-3 to issue
commands, to the control package, for displaying data
about the manipulator state.

sampling rate of 200 Hz.

Figure 2-7: Control Software Organization

2.43. Real-Time Computing Performance
The Motorola 68020/68881 CPU has been extensively

benchmarked for many applications, with typically reported
performances of 2 MIPS and 0.25 MFLOPS [14,8]. In order to
determine the performance of the actual system executing a typical

424

manipulator control program, the RMMS realtime CPU was
benchmarked performing a single iteration of a PSD position control
loop. The control law calculation is given by the following pseudo-
C code. All variables are double precision floating point variables,
referenced indirectly by an offset from an address register (the
benchmark thus includes a typical level of addressing overhead).
The actual code was written with no attempt at optimization other
than that performed by the compiler.

pos-error = referencegosition - position:
vel-error = reference-velocity - velocity:
integral = (integral alpha) + pos-error;
torque-comnd = (pos-error * Kp) +
if (torque-command > T l i m)
torque-comnd = T l i m :

else if (torque-command < - T l i m)
torque-command = - T l i m :

(vel-error Kv) + (integral K i) :

This computation requires 11 floating point operations (4
multiplies, 5 additions/subtractions, and 2 comparisons). The actual
code is fairly typical of fiist pass code written by an average C
programmer. This segment executes in 0.12 milliseconds, indicating
floating point performance of approximately 0.1 h4FLOPS.
Obviously this is a rough measurement of system performance,
however this is quite good considering the unoptimized nature of the
code. With simple code optimization, it is quite possible that
compiled C code could approach the 0.25MFLOP performance
claim.

2.4.4. Application Control Software
Within the RMMS computing environment, application programs

are SUN-3 programs, written in a SUN supported language.
Currently, we are using the C programming language for developing
application programs. Access to the manipulator controller is via
special Unir devices which implement pipe like communication
channels to the real-time program. This mechanism has been used to

build a message passing protocol between the two processors. This
has been done for the existing manipulator control package, allowing
a SUN program to call an appropriate library routine which signals
the manipulator control program to execute the desired command.

3. Automatic Kinematics Generation
Specifying a manipulator task typically requires specifying the

end effector position (with reference to the manipulator base) as a
function of time and system conditions. This method of task
specification is well suited to an RMMS, as it is completely
independent of the manipulator configuration; the manipulator is
simply considered a motion transducer. Since the end effector
position is controlled indirectly by controlling each joint’s axis
position, the relationship between these two quantities, known as the
manipulator forward and reverse kinematics, is required. Deriving a
set of Denavit-Hartenberg parameters (for the forward kinematics)
and a closed-form reverse kinematics solution requires both
mathematical manipulation and geometric intuition [I 11. Further,
since an arbitrary manipulator may be created from the RMMS, the
forward and reverse kinematics solutions have to be derived for each
configuration of the manipulator.

To alleviate the above difficulty we have proposed algorithms that
create the forward and reverse kinematics solutions automatically
from a description of the joint and link modules and the sequence in
which they have been connected. For the reverse kinematics we
have adopted a numerical approach that allows for complete
generality and can also accommodate redundant manipulators. A

general numerical solution to the reverse kinematics is often
computationally inefficient and mathematically poorly behaved
especially close to singularities. To address this issue, we have
developed a robust reverse kinematics solution that is well behaved
close to a singularity and can be computed at real-time rates. In the
ensuing paragraphs we present our approach to generating the
kinematics of a RMMS automatically.

3.1. Generating the Forward Kinematics
The forward kinematic equations of a manipulator describe the

position and orientation of the end-effector as a function of the joint
variables. The forward kinematic transformation is typically
obtained from a set of parameters known as the Denavit-Hartenberg
(D-H) parameters of the manipulator. These parameters are obtained
through a predefined sequence of transformations and are a function
of the geometry of the manipulator. The input to our forward
kinematics algorithm is the geometry of each module, the type of
each module, and the sequence of connection of the modules that
comprise the manipulator. The output of our forward kinematics
algorithm is the set of D-H parameters of the manipulator.

Figure 3-1: Link Module Coordinate Assignment

We use homogeneous transformation matrices to specify the
geometry of modules. For a link module we use one homogeneous
transformation that relates one end of the link to the other as
depicted in Figure 3-1. In order to incorporate both the degree+f-
freedom of a joint and its shape we use two homogeneous
transformations: one from the lower left connector to the origin of
the joint (IJ0) and another from the origin to the upper right
connector (OJ,). A typical joint module and its database description
is shown in Figure 3-2. The definition of the origin of the joint
module is arbitrary as long as it is chosen to be a point lying along
the axis of rotation. Based on the above systematic description, we
have implemented an algorithm that automatically creates the
forward kinematics of an RMMS. For the sake of brevity we have
excluded the details of the algorithm in this paper, they are presented
in [4].

425

2 /
A

f

A simpler method of generating the forward kinematics of an
RMMS would be to sequentially multiply all the module
transformations. However, it is desirable (particularly when the
manipulator Jacobian is also required) to represent the forward
kinematics in terms of the Denavit-Hartenberg parameters. In the
present implementation. the control computer reads the description
of the joint and link module descriptions through a database file.
However, in the f u m e each joint and link module will have a ROM
which will include the kinematic information pertaining to that
module.

X ez

32. Reverse Kinematics of RMMS
In order to do any controlled movement it is necessary to have an

inverse kinematic model to determine the joint angles required to
achieve a d e s d position and orientation of the end-effector.
Ideally, one derives closed form equations for the inverse kinematics
where each joint variable is expressed in terms of other known
quantities. However, existence of a closed form inverse kinematics
solution depends on the kinematic structure of the
manipulator [12, 161. For example. it is known that a closed form
solution exists for a manipulator which has three consecutive axes
that intersect, such as in a spherical wrist[12]. This solvability
condition is not necessary, but only sufficient. Because an RMMS
manipulator can m u m e any configuration, including one that is
redundant, it may not be possible to find a closed form solution. In
order to provide for generality we have adopted a numerical
approach for solving the inverse kinematics of an RMMS. In the
ensuing paragraphs we describe a numerical method to compute the
inverse kinematics of non-redundant manipulators[5]. We also
describe an extension of this method that is applicable for redundant
manipulators.

c-5 \

32.1. Inverse Kinematics of Non-Redundant Manipulators
A closed-loop method for solving the inverse kinematics

equations using the Newton Raphson method is proposed in [5] and
is depicted in Block diagram form in Figure 3-3. The iterative
method determines the necessary changes in the joint angles to

achieve a differential change in the position and orientation of the
endeffector. The forward kinematics are described in functional
form as:

x = f(q). (1)
where x is the vector of Cartesian position and orientation and q is a
vector of joint displacements. The corresponding differential
changes dx and dq. in the Cartesian and joint space, respectively, are

Y, - I d.
\ x

related through the manipulator Jacobian as:
dx = J(q)dq.

1, X

Inverting Equation (2) to obtain an expression for the differential
inverse kinematics we obtain:

dq = Jt(q)dx (3)
where J 1 is the inverse Jacobian. The above equation may be
written, in an iterative form, as:

dqk+1 = J1(qk)dxk (4)

,z

-

L5-r
y

Figure 3-3: Block Diagram of Inverse Kinematics Algorithm

where the differential change in position and orientation at the k-th
iteration is computed from the differential homogeneous
transformation mahix dTN [ll]. The joint displacements are
computed as:

Equation (4) is solved iteratively, until each term in TNh (or
correspondingly in dxk) is within a prespecified error tolerance, E.

k

qk+l= qk + dqk+l

We have performed experiments using the above algorithm and
have shown it to work well for non-redundant systems. Including
redundancy introduces complications in the computation of the
inverse kinematics solution. The Jacobian, which relates differential
changes in the joint variables to differential changes in the Cartesian
variables is of dimension M x N, where M is the number of degrees
of freedom of the workspace and N is the number of degrees of
freedom in the manipulator. When M and N are not equal (which is
the case for redundant manipulators), the Jacobian is no longer
invertible and we must substitute a generalized inverse to provide an
inverse equivalent

Much of the previous research on inverse kinematics for
redundant manipulators has focused on the pseudoinverse [l , 3,71.
The pseudoinverse is a generalized inverse which provides the
minimum norm solution [lo]. Because standard pseudoinverse
control has proved to be inadequate in the neighborhood of
singularities, many methods have been developed which augment
the pseudoinverse so as to use the kinematic redundancy to optimize
an objective function [I , 2.71.

While methods cited above are configuration dependent,
computationally intensive, or both, the method we propose for
RMMS achieves singularity avoidance while requiring negligibly
more computations than the standard pseudoinverse. It is called the
singularity robust inverse [9]. The pseudoinverse solution is

426

I

problematic in the neighborhood of a singularity. In an effort to
converge to an exact solution, the pseudoinverse may generate an
infeasible solution. That is. it may generate a solution for which
one, or more, of the dq values is so large that it cannot be physically
realized. The singularity robust inverse. method circumvents this
problem by providing continuous and feasible solutions even at, or
in the neighborhood of, singular points.

The singularity robust inverse is based upon an evaluation index,

(5)

which simultaneously considers the exactness of the solution, as
measured by the top term, and the feasibility of the solution, as
measured by the bottom term. When solving the inverse kinematics
problem one must find the minimum weighted Euclidean norm of
the evaluation index. The weighting of the terms in the evaluation
index manifests itself with the scale factor 1. The singularity robust
inverse, J* becomes:

J* = JT(JTJ + A,Iyl.

In the next section we discuss a technique for choosing the the
parameter h.

33. A Method for Choosing the Scale Factor
In order to employ the singularity robust inverse for RMMS, we

must develop a method to automatically generate an appropriate
scale factor for any manipulator. The scale factor, h, must have a
large value in the neighborhood of singular points and must be small
value, or zero, far from singular points. This is achieved by
computing X as [9]:

(7)

where o = dderenninanr(J.JT) is a manipulatability measure for the
manipulator [IX], is the magnitude of the scale factor at singular
points, and oo is a threshold which represents the neighborhood of
singular points. Equation (7) automatically adjusts h according to

the manipulator's distance from a singular point.

To experimentally implement the above method it is necessary to
choose values for the parameters h, and ow Further, the choice of
these parameters must be configuration independent and work
without a priori knowledge of the location of manipulator's
singularities or kinematic parameters. While the value of o
approaches zero as the manipulator approaches a singular point, it's
absolute magnitude is dependent on the the dimensions and the units
of measure of the links and joints of the manipulator. For example,
an o of I@ may imply that one manipulator is near a singular point,
but another manipulator, which has much smaller dimensions, may
be far from one. In order to remove the dependency of o on the
units of measure and the absolute values of the kinematic lengths, we
have introduced the idea of a scaling a manipulator. Scaling is
accomplished by dividing all the kinematic lengths by the largest
length of a manipulator. This forces all the kinematic lengths to lie

between zero and one thus diminishing the disparity in the
magnitudes of o between different manipulators. However,
different scaled manipulators may still generate vastly different o
values.

The singularity robust inverse chooses an absolute threshold value
to specify a,,. As mentioned before this choice is manipulator
dependent. In order to alleviate this difficulty, we propose checking
for a sudden drop in the value of o between iterations. This is

motivated by the observation that as a manipulator approaches
singular configuration the value of w decreases dramatically. We
detect the neighborhood of a singularity when the ratio %! falls

below a threshold p. That is, we examine the ratio of o between the
Ph and the k+l fh iterations of the Newton-Raphson algorithm.

%

Based upon the above discussion, the equation for computing the
scale factor h (for a scaled manipulator) is:

0 otherwise

Our experiments with the above technique suggest p = 0.1 to be
reasonable value.

We choose h, based on the tradeoff that is the premise for the
singularity robust inverse. method. Namely, by adding a larger scale
factor we make the solution less exact, but more feasible or robust.
In order to generate a less exact solution we must increase E. (Recall
E is the convergence error tolerance for the Newton-Raphson
algorithm.) While increased error tolerance is acceptable for many
applications, we cannot assume so for the general case.
Alternatively, we maintain the error tolerance and increase the
number of iterations of the Newton-Raphson algorithm until the
error is less than E.

Before choosing a value for h, we must determine how large h
can be before the system fails to converge. In order for the Newton-
Raphson iteration to converge, the residual error must be less than
the error tolerance E. Therefore, k must be also be less than E.

Rather than defming an absolute value for h,, we propose setting h,
equal to one order of magnitude smaller than E (h, = 0.18). This
choice is based upon our experimental results with p = 0.1.

4. Summary
In this paper we have describe the design of an RMMS. The

feasibility of such a system has been demonstrated through the
construction of a prototype RMMS built using readily available
commercial components. A powerful computer control system with
both real-time scheduling and Unix compatibility has also been built,
and used to control the current RMMS manipulator.

As part of the effort to develop reconfigurable control programs,
an algorithm for automatic forward and reverse kinematics
generation has been implemented and tested. The algorithm is
implemented as a computer program, which can fiRd the Denavit-
Hartenberg parameters for an arbitrary configuration manipulator,

427

and then perform an iterative inverse kinematics solution. The
inverse kinematics algorithm has been extended to work for
redundant manipulators. The extended algorithm generates
manipulator solutions which avoid singular positions. Both
algorithms have been optimized for computational efficiency and
robustness, and have been implemented on an Motorla 68020/68881
based single board computer. at rates on the order of 20 Hz.

References

J. Baillieul, J. Hollerbach, R. Brockett.
Programming and Control of Kinematically Redundant

Proc. 23rd Conference on Decision and Control :768-774,

J. Baillieul.
Kinematic Programming Alternatives for Redundant

IEEE International Conference on Robotics and Automation

P.H. Chang.
A Closed-form Solution for the Control of Manipulators with

IEEE Internaltional Conference on Robotics and Automation

L. Kelmar and P. Khosla.
Automatic Generation of Kinematics for a Reconfigurable

In IEEE Conference on Robotics and Automation. IEEE,

P.K. Khosla, C.P. Neuman, and F.B. hinz.
An Algorithm for Seam Tracking Applications.
The International Journal of Robotics Research 4(1):2141,

Khosk P. K.
Real-Time Control and Idenljfication of Direct-Drive

Manipulators.
PhD thesis, Department of EleceicaJ and Computer

Engineering, Carnegie-Mellon University, August, 1986.

C. A. Klein and C-H Huang.
Review of Pseudoinverse Control for Use with Kinematically

Redundant Manipulators.
IEEE Trans. on Sysrems. Man. and Cybernetics

Beims. Bob.
The Floating-Point Performance Standard Gets Even Faster!
In (editor). WESCON I986 Professional Program Papers,

Y. Nakamura and H. Hanafusa.
Inverse Kinematic Solutions with Singularity Robustness for

Robot Manipulator Control.
Journal of Dynamic Systems. Measurement, and Control

108:163-171, September, 1986.

B. Noble and J.W. Daniel.
Applied Linear Algebra.
Prentice Hall, NJ., 1977.
Second Edition.

Manipulators.

December, 1984.

Manipulators.

1~722-728. March, 1985.

Kinematic Redundancy.

1:9-14, April, 1986.

Modular Manipulator System.

April, 1988.

Spring, 1985.

SMC- 13(3):245-250, MarchlApriI, 1983.

Session 391 . Electronic Conventions, 1986.

Paul, R. P.
Robot Manipulators : Mathematics, Programming and

Control.
MIT Press, Cambridge, MA, 1981.

Pieper, D. L.
The Kinematics of Manipulators under Computer Control.
PhD thesis, Department of Computer Science, Stanford

Anon.
Technical Brochure on Modular Arms
Robotics Research Inc., Ohio, 1987.

Anon.
The SUN-3 Family: An Overview
SUN Mircosystems Inc., California, 1986.

Walker, M.
A Survey of Research Robots.
Technical Report, University of Michigan, Ann Arbor, 1987.

W.A. Wolovich.
Robotics: Bm'c Analysis and Design.
Holt, Rinehart and Winston, New York, 1987.

Wurst, K. H.
The Conception and Construction of a Modular Robot

In Proceedings of the 16-th International Symposium on

Yoshikawa, T..
Manipulability of Robotic Mechanisms.
In Proceedings of the Second International Symposium on

Robotics Research. MIT, Kyoto, Japan, August 20-23,
1985.

University, 1968.

System.

Industrial Robotics, pages 31-44. ISIR, 1986.

428

